首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188113篇
  免费   26122篇
  国内免费   23549篇
电工技术   19093篇
技术理论   8篇
综合类   13742篇
化学工业   37387篇
金属工艺   7707篇
机械仪表   12313篇
建筑科学   8621篇
矿业工程   2168篇
能源动力   5956篇
轻工业   13522篇
水利工程   2495篇
石油天然气   4387篇
武器工业   2001篇
无线电   29356篇
一般工业技术   21110篇
冶金工业   3992篇
原子能技术   3264篇
自动化技术   50662篇
  2024年   484篇
  2023年   3043篇
  2022年   5175篇
  2021年   6960篇
  2020年   6652篇
  2019年   6017篇
  2018年   5552篇
  2017年   7607篇
  2016年   8409篇
  2015年   9830篇
  2014年   9525篇
  2013年   12765篇
  2012年   14674篇
  2011年   16533篇
  2010年   11937篇
  2009年   11773篇
  2008年   13037篇
  2007年   14448篇
  2006年   13765篇
  2005年   11813篇
  2004年   9982篇
  2003年   7847篇
  2002年   5975篇
  2001年   4359篇
  2000年   3413篇
  1999年   2847篇
  1998年   2349篇
  1997年   1854篇
  1996年   1579篇
  1995年   1400篇
  1994年   1245篇
  1993年   927篇
  1992年   750篇
  1991年   593篇
  1990年   514篇
  1989年   381篇
  1988年   293篇
  1987年   182篇
  1986年   170篇
  1985年   227篇
  1984年   199篇
  1983年   138篇
  1982年   196篇
  1981年   95篇
  1980年   95篇
  1979年   24篇
  1978年   15篇
  1977年   24篇
  1959年   18篇
  1957年   14篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
41.
《Ceramics International》2022,48(22):33122-33134
Gradient refractive index (GRIN) micro-optics present unique opportunities for control of the chromatic properties, new degrees of freedom for optical design as well as the potential for use in new optical system applications. GRIN microgratings were imprinted in GeS2-Ga2S3-MCl (M = Na, K, Cs) chalcohalide glasses by microthermal poling, and the effects of the type and concentration of alkali cations on their performance were investigated. Two effective imprinting formation regions of the GRIN microstructure based on the poling saturation voltage (Us) and glass composition are observed at fixed poling time and temperature. The Us increases from 140 to 750 and 2600 V in accordance with the activation energy (Ea) of alkali ions (Na+ to K+ and Cs+) increasing from 45.15 to 58.62 and 92.58 kJ/mol for studied samples. The saturated numbers of diffraction order (Ns) of the gratings in these samples are 7, 9 and 6, respectively, the highest number being provided by the K+-containing sample. This is in accordance with imprinting-induced phase differences (0.14λ, 0.19λ and 0.09λ) measured in the fabricated samples containing Na+, K+ and Cs+ ions. Furthermore, the Us of samples decreases from 1500 to 300 V with four concentrations of K+ from 10 to 30%, associated with their Ea of K+ decreasing from 69.62 to 53.46 kJ/mol, while Ns increases from 8 to 14, which is attributed to the increase of the phase difference in the GRIN structures. The controllable GRIN microstructures are realized by adjusting the type and concentration of alkali cations in chalcohalide glasses, which is expected to drive the design of broadband GRIN microgratings.  相似文献   
42.
We analysed with different methods the densification of UO2 nanopowders in SPS under constant heating rate (CHR) and isothermal sintering conditions. The apparent activation energy of densification in SPS (75 kJ/mol with CHR method) is significantly smaller than in conventional sintering. It is shown that this is likely not an effect of the applied current. We also observed a threshold stress at 64 MPa for the transition from pressure-insensitive sintering (stress exponent n≈0) to pressure-assisted sintering, suggesting that the contribution of the capillary stresses in such nanopowders is comparable with the typical stress applied in SPS.  相似文献   
43.
A new type of high-temperature-resistant SiZrBOC ceramics was prepared by sol-gel method using polymethyl-hydro siloxane (PMHS), boric acid (B(OH)3), and n-propyl zirconate (Zr(OPr)4) as raw materials. After high-temperature pyrolysis, the SiZrBOC precursor was transformed into a crystalline ceramic material with a yield of 89.5 wt%. Fourier infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were applied to characterize the polymer-ceramic conversion process and thermal behavior of ceramic precursors. According to the results, the addition of boron elements led to the formation of Si-O-B links in the system. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the phase composition and microstructure of SiZrBOC ceramics. Finally, the oxidation test at 1200 °C revealed that SiZrBOC ceramics with a boron/zirconium molar ratio of 2.5:1 exhibited the best oxidation resistance at a weight gain of 0.4 wt% only.  相似文献   
44.
In this research, using the kinetic Monte Carlo simulation (KMC), the hydrogen production from a water-methanol mixture using Au/TiO2 photocatalyst is investigated. A mechanism is proposed, and the rate constants of the reaction steps are specified. The reaction rate constants of different steps and the concentration of the active sites on the photocatalyst surface were determined. An excellent match between simulated and experimental data confirms the results. The electron-hole pair production, methanol adsorption on the photocatalyst surface, and electron-hole recombination steps are considered the most critical steps. To study the effects of independent variables (initial concentration of methanol, photocatalyst dosage, pH, and time of reaction) on the produced hydrogen, a combination of KMC simulation and design of experiment was employed. The concentration of photocatalysis has the highest and pH has the lowest effect on the hydrogen production. The optimal conditions for photocatalytic hydrogen production are presented.  相似文献   
45.
格点量子色动力学(格点QCD)是研究夸克、胶子等微观粒子间相互作用的重要理论和方法. 通过将时空离散化为四维结构网格, 并将量子色动力学的基本场量定义在网格上, 让研究人员可以使用数值模拟方法, 从第一性原理出发研究强子间相互作用和性质, 但这个过程中的计算量极大, 需要进行大规模并行计算. 格点QCD计算的核心基础为格点QCD求解器, 是程序运行主要的计算热点模块. 本文研究在国产异构计算平台下格点QCD求解器的实现与优化, 提出一套格点QCD求解器的设计实现, 实现了BiCGSTAB求解器, 显著降低了迭代次数; 通过对奇偶预处理技术, 降低了所求问题的计算规模; 针对国产异构加速卡的特点, 优化了Dslash模块的访存操作. 实验测试表明, 相比优化前的求解器获得了约30倍的加速比, 为国产异构超算下格点QCD软件性能优化提供了有益的参考价值.  相似文献   
46.
47.
Through a facile hydrothermal method, we have successfully prepared Ti3C2/Bi2.15WO6 (TC/BWO) composite, and systematically investigated their reactivity for the photocatalytic reduction of Cr(VI) under visible light. X-ray diffraction and Raman analysis confirm the formation of heterostructure between Bi2.15WO6 and Ti3C2. The resultant 7TC/BWO composite exhibits enhanced photoactivity toward Cr(VI) reduction. After 120 min irradiation, the conversion of Cr(VI) reaches 92.5% with the quasi-first-order kinetic constant of k = 0.0145 min?1, which is higher than that of pure BWO (30% and k = 0.0005 min?1). The electrochemical and photoluminescent characterization confirm that the introduction of Ti3C2 is conducive to the separation of carriers, thus significantly improves the photocatalytic performance of TC/BWO. Furthermore, the radical capture experiments verify that the electrons are important for enhancing reduction of Cr(VI) to Cr(III). As a result, this research provides a comprehensive understanding of the reduction of Cr(VI) by TC/BWO composite under visible light.  相似文献   
48.
The slight-alkalization of generator internal cooling water (GICW) is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator. CO2 inleakage is increasingly identified as a potential security risk for GICW system. In this paper, the influence of CO2 inleakage on the slight-alkalization of GICW was theoretically discussed. Based on the equilibriums of the CO2-NaOH-H2O system, CO2 inleakage saturation was derived to quantify the amount of the dissolved CO2 in GICW. This parameter can be directly calculated with the measured conductivity and the [Na+] of GICW. The influence of CO2 inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed. The more severe the inleakage, the narrower the water quality operation ranges of GICW, resulting in the more difficult the slight-alkalization conditioning of GICW. The temperature calibrations of the conductivity and the pH value of GICW show non-linear correlations with the amount of CO2 inleakage and the NaOH dosage. This study provides insights into the influence of CO2 inleakage on the slight-alkalization of GICW, which can serve as the theoretical basis for the actual slight-alkalization when CO2 inleakage occurs.  相似文献   
49.
The utilization of biological-, electrode- and conductive material-mediated direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and methanogenic archaea for enhancing methane productivity is widely reported in the literature. However, two cardinal questions are still controversial, i.e., which applied voltage value would be more recommended to enhance methane generation? and how the DIET over IIET has the upper hand in enhancing methane productivity? Herein, the influence of different applied voltages to promote biological-, conductive- and electrode-mediated DIET was investigated in MEC-AD reactors with conductive material. Polarized bioelectrodes induced electrode-mediated DIET (eDIET) and biological DIET (bDIET), in addition to cDIET (conductive material-mediated DIET), improved the methane yield to 315.40 mL/g CODr with an applied voltage of 0.9 V. Whereas further increase of applied voltage 1.2 V, lessened methane production efficiency due to high-voltage inhibition and adverse effect on DIET promotion. The anaerobic digestion coupled microbial electrolysis cells with optimal electric potential selectively promotes the DIET through polarized electrodes were confirmed through microbial analysis. As the contribution of DIET increased to 80%, the methane yield increased, and the substrate residue decreased, resulting in a significant improvement in methane production.  相似文献   
50.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号